If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n=10
We move all terms to the left:
n^2+n-(10)=0
a = 1; b = 1; c = -10;
Δ = b2-4ac
Δ = 12-4·1·(-10)
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{41}}{2*1}=\frac{-1-\sqrt{41}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{41}}{2*1}=\frac{-1+\sqrt{41}}{2} $
| 3k+k+12=0 | | (5 − 3 t)=(5 + 3 t) | | H=-2t÷12 | | H=-2t+12 | | 7y=3×1/2 | | 10+15t=15t-9t | | x8=10 | | (7-v)(5v+4)=0 | | 112=225-w | | -w+227=30 | | 300b+100(40-b)=8400 | | 300b+400-300b=8400 | | .0.7x+0.4=0.6x+2.4 | | 3=-a+1 | | 220=67-y | | P=4–(QxQ) | | 4z+9=5 | | 226=-y+175 | | (x3+3⁴x-3²3=2-3x+3x-9=x2-9) | | 7y=31/2 | | 203-w=30 | | 300p+840000-100p=8400 | | 3x-12/4+x/12=x/3-2 | | 7/6=-9/8t | | -u+188=142 | | 3/5z=1 | | 8x−164x−24=0 | | 6/5x+2/9=-1 | | 14-4(x+3)=12(x+4)-28 | | 9/16=-y/8 | | *|2x-1|=0.5 | | 9-6(1-5b)=-16 |